Persistence of centrality in random growing trees

نویسندگان

  • Varun Jog
  • Po-Ling Loh
چکیده

We investigate properties of node centrality in random growing tree models. We focus on a measure of centrality that computes the maximum subtree size of the tree rooted at each node, with the most central node being the tree centroid. For random trees grown according to a preferential attachment model, a uniform attachment model, or a diffusion processes over a regular tree, we prove that a single node persists as the tree centroid after a finite number of steps, with probability 1. Furthermore, this persistence property generalizes to the top K ≥ 1 nodes with respect to the same centrality measure. We also establish necessary and sufficient conditions for the size of an initial seed graph required to ensure persistence of a particular node with probability 1 − ǫ, as a function of ǫ: In the case of preferential and uniform attachment models, we derive bounds for the size of an initial hub constructed around the special node. In the case of a diffusion process over a regular tree, we derive bounds for the radius of an initial ball centered around the special node. Our necessary and sufficient conditions match up to constant factors for preferential attachment and diffusion tree models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of centrality in sublinear preferential attachment trees via the CMJ branching process

We investigate centrality properties and the existence of a finite confidence set for the rootnode in growing random tree models. We show that a continuous time branching processescalled the Crump-Mode-Jagers (CMJ) branching process is well-suited to analyze such randomtrees, and establish centrality and root inference properties of sublinear preferential attachmenttrees. We...

متن کامل

On the distribution of betweenness centrality in random trees

Betweenness centrality is a quantity that is frequently used to measure how ‘central’ a vertex v is. It is defined as the sum, over pairs of vertices other than v, of the proportions of shortest paths that pass through v. In this paper, we study the distribution of the betweenness centrality in random trees and related, subcritical graph families. Specifically, we prove that the betweenness cen...

متن کامل

Betweenness centrality profiles in trees

Betweenness centrality of a vertex in a graph measures the fraction of shortest paths going through the vertex. This is a basic notion for determining the importance of a vertex in a network. The kbetweenness centrality of a vertex is defined similarly, but only considers shortest paths of length at most k. The sequence of k-betweenness centralities for all possible values of k forms the betwee...

متن کامل

Persistence of the Jordan center in Random Growing Trees

The Jordan center of a graph is defined as a vertex whose maximum distance to other nodes in the graph is minimal, and it finds applications in facility location and source detection problems. We study properties of the Jordan center in the case of random growing trees. In particular, we consider a regular tree graph on which an infection starts from a root node and then spreads along the edges...

متن کامل

Finding Rumor Sources on Random Trees

We consider the problem of detecting the source of a rumor which has spread in a network using only observations about which set of nodes are infected with the rumor and with no information as to when these nodes became infected. In a recent work (Shah and Zaman 2010) this rumor source detection problem was introduced and studied. The authors proposed the graph score function rumor centrality a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2018